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EXECUTIVE SUMMARY 

Recent small aircraft that have been certified in the United States, such as the Cirrus SR20 and 
the Lancair Columbia 300, share similar structural attributes. Specifically, they are both of 
nearly all-composite construction and both make extensive use of adhesive bonding as a primary 
method for forming structural joints. Adhesive bonding has potential for being a simple and 
cost-effective means by which large built-up structures can be assembled. Challenges to bonding 
exist in the areas regarding proper adhesive selection, surface preparation, and technician 
training as well as intelligent design and confidence in analyses. This report addresses the latter 
challenge by presenting an analysis methodology that can be used in the design of joints loaded 
in both tension and in-plane shear. Example calculations and applications to real structures are 
provided. 

A closed-form stress analysis of an adhesive bonded lap joint subjected to spatially varying in- 
plane shear loading is presented. The solution, while similar to Volkersen's treatment of tension- 
loaded lap joints, is inherently two-dimensional and, in general, predicts a multicomponent 
adhesive shear stress state. Finite difference and finite element numerical calculations are used 
to verify the accuracy of the closed-form solution for a joint of semi-infinite geometry. The 
stress analysis of a finite-sized doubler is also presented. This analysis predicts the adhesive 
stresses at the doubler boundaries. It is unaffected by the stress conditions in the interior of the 
patch and can be performed independently from the complex stress state that would exist due to a 
patched crack or hole located within the interior of the doubler. 

When shear and tension loads are simultaneously applied to a joint, the results of stress analyses 
treating each loading case separately are superimposed to calculate a combined biaxial shear 
stress state in the adhesive. Predicting the elastic limit of the joint is then accomplished by using 
the von Mises yield criterion. This approach allows the calculation of a limit load envelope that 
maps the range of combined loading conditions within which the joint is expected to behave 
elastically. 

This generalized analysis, while approximate due to the nature of assumptions made in 
formulating the theoretical description of an in-plane, shear-loaded joint, has been shown to be 
accurate by alternate numerical analyses. Such analytical tools are advantageous over numerical 
solution techniques due to their mechanics-based foundation which permits the rapid exploration 
of parameters that can affect joint performance. This feature is especially useful during the 
design stage of an aircraft. 
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1. INTRODUCTION. 

Recent small aircraft that have been certified in the United States, such as the Cirrus SR20 and 
the Lancair Columbia 300, share similar structural attributes. Specifically, they are both of 
nearly all-composite construction and both make extensive use of adhesive bonding as a primary 
method for forming structural joints. Adhesive bonding has potential for being a simple and 
cost-effective means by which large built-up structures can be assembled. Challenges to bonding 
exist in the areas regarding adhesive selection, proper surface preparation, and technician 
training as well as proper design and confidence in analysis. This report addresses the latter 
challenge by presenting an analysis methodology that can be used in the design of joints loaded 
in both tension and in-plane shear. 

Significant attention has been directed towards the design, analysis, and testing of adhesively 
bonded lap joints loaded in tension [1-7]. While this mode of loading has numerous 
applications, many cases also exist where the lap joint is loaded by in-plane shearing forces. 
Examples of in-plane shear force transfer across bonded joints can be found in torsion-loaded, 
thin-walled structures having circumferentially and longitudinally oriented lap joints, illustrated 
in figure 1. Structures falling under the scope of this example are a bonded driveshaft end-fitting 
(circumferential joint, treated by Adams and Peppiatt [8]) and a large transport aircraft fuselage 
barrel built in two longitudinal halves and subsequently bonded together (longitudinal joint). An 
example of a small aircraft fuselage splice joint is shown in figure 2. When these structures 
carry torque loads, shear flow that is produced in the wall is transferred across the joint. Another 
example is a bonded composite shear web, shown in figure 3, typically found as an integral 
component in the design of aircraft wing spars. In this example, bending and torsion loads 
carried by the wing produce shear flow in the shear webs. For the generic configuration, shown 
in figure 3, load is introduced into the web through the bonded angle clips that form the 
structural tie between the shear web and the spar cap (or load-bearing wing skin). Sizing the 
geometry of this joint is dependent upon an understanding of what components of internal forces 
are transmitted through the joint (i.e., in-plane shear dominates), as well as an understanding of 
the mechanisms by which in-plane shear load is transferred across the adhesive layer from one 
adherend to the next. 

A mechanics-based analysis of an in-plane shear-loaded bonded lap joint is presented. This 
analysis, derived in more detail in work by Kim and Kedward [9], treats the in-plane shear- and 
tension-loaded cases as uncoupled from each other. For simultaneous shear and tension loading, 
a multicomponent shear stress state in the adhesive is predicted by superimposing the two 
solutions. The resulting solution form for shear transfer is analogous to the tension-loaded lap 
joint case, the basic derivation of which is attributed to Volkersen [1]. 
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FIGURE 1. CIRCUMFERENTIAL- AND LONGITUDINAL-BONDED JOINTS 
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2. DERIVATION OF GOVERNING EQUATION. 

Consider the shear-loaded, bonded lap joint shown in figure 4. The differential element in figure 
4 shows the in-plane shear stresses acting on the inner and outer adherends, T'   and x° , as well 

as two components of adhesive shear stress, Ta
xz and xa. This analysis is applicable to both the 

single- and double-lap joint geometries which are illustrated in figure 5. The double-lap case is 
limited to the condition of geometric and material symmetry about the center of the inner 
adherend, so that the problem is then conceptually identical to the single lap case. Alternatively, 
if both outer adherends have equivalent stiffness, i.e., same product of shear modulus and 
thickness, then the double-lap joint can still be treated as symmetric. The following conditions 
have been assumed: 

Constant bond and adherend thickness 
Uniform shear strain through the adhesive thickness 
Adherends carry only in-plane stresses 
Adhesive carries only out-of-plane shear stresses 
Linear elastic material behavior 

Outer 
Adherend 

FIGURE 4. LAP JOINT TRANSFERRING SHEAR STRESS RESULTANT N^ AND 
DIFFERENTIAL ELEMENT SHOWING ADHEREND AND ADHESIVE STRESSES 
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FIGURE 5. SINGLE- AND DOUBLE-LAP GEOMETRY 



In figure 4, the applied shear stress resultant N^ is continuous through the overlap region and, at 
any point, must equal the sum of the product of each adherend shear stress with its respective 
thickness. 

N   -x't+x't xy        * xy i       "xy o (1) 

where tt and t0 are the thickness of the inner and outer adherends, respectively, as indicated in 
figure 5. Force equilibrium performed on a differential element of the outer adherend, shown in 
figure 6, results in relationships between the adhesive stress components and the outer adherend 
shear stress. 

and 

K = K xz 0 ay 

yz     °  dx 

(2) 

(3) 
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dx      xy 
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FIGURE 6. ADHESIVE AND ADHEREND STRESSES ACTING ON 
ELEMENT OF OUTER ADHEREND 

The adhesive shear strains are written based on the assumption of uniform shear strain through 
the thickness of the adhesive, 

T"        1 K=-^ = -(u0-Ui) (4) 

and 

T        1 
hz    G      t K °     l) (5) 



where Ga is the adhesive shear modulus, ta is the adhesive thickness, u0 and M, are the outer and 
inner adherend displacements in the x direction, and v0 and v, are the displacements in the 
y direction.   Summing the y derivative of ya

xz with the x derivative of ya
yz, and combining the 

resulting expression with equations 1 to 3, produces a partial differential equation governing the 
shear stress in the outer adherend. 

V2T;-A2T;+C0 o (6) 

with 

and 

X2=^ 
(   1 1   ^ 
—— + —— 

G N 
C -    a   v 

G t t.t xy a i o 

(7) 

(8) 

This equation is generally applicable for two-dimensional problems.  In equations 7 and 8, G'^ 

and G° are the in-plane shear moduli of the inner and outer adherends. 

3. SOLUTION FOR SEMI-INFTNrTE CASE. 

3.1 IN-PLANE SHEAR LOADING. 

A semi-infinite joint loaded by in-plane shear is shown in figure 7. Problems can be treated 
using the semi-infinite assumption if load intensity drops off at the terminations of the joint, or 
just to size the joint at regions located away from complex boundary conditions. 

Outer Adherend 

Inner Adherend 

FIGURE 7. SEMI-INFINrTE LAP JOINT 

The adhesive shear stress components %a
xz and T*2 can be obtained using the relationships given 

by equations 2 and 3, once equation 6 for T^ is solved. A simplifying assumption of A^ being 



independent of y (can be smoothly varying in x [9]) is now applied that permits a solution for the 
lap joint geometry shown in figure 7. 

C„ 
1° = A0 cosh Ay + B0 sinhXy + ~ (9) 

where A, and C0 are given by equations 7 and 8. This solution satisfies the governing equation 6 
exactly and is the same as that given by previous authors [10 and 11] for this simple case. Using 
the following boundary conditions (see joint geometry in figure 5), 

and 
T;=0at y = -c 

Tl=^2L at y = c 
*y t„ 

(10) 

(11) 

the unknown terms can be determined. 

1 (N      C 

cosh Äc 
xy 

2t 
and 

B = 
AL 

2tnsinhXc 

(12) 

(13) 

Substituting A0 and B0 into equation 9 gives the profile of in-plane shear stress acting in the outer 
adherend. The in-plane shear stress acting in the inner adherend can then be calculated using 
equation 1. Equation 2 is used together with equation 9 to compute the out-of-plane shear stress 
acting in the adhesive. 

d< xy 

° ay 

(N C     ^ 

X2 °, 

sinhXy    Nxy coshXy 

coshXc      2   sinhXc 
(14) 

For a joint with uniformly applied shear flow, N^, the Ta
yz shear stress component is zero.  The 

maximum values of adhesive shear stress occur at the ends of the bonded lap region, at y = ±c. 
These peaks are expressed in a normalized form as 

fcl y=±c 
= CÄ, 

( 
± 

L    V 

1 
K + \ 

tanhXc + - 
1  

tanhXc 
(15) 

with 

V  xz la 

N„ xy 

2c 
(16) 



and 

K=G'^ 
G%t0 

(17) 

The peaks in adhesive shear stress are generally several times greater than the average adhesive 
shear stress. Note that for the case when the inner and outer adherends have the same in-plane 
shear stiffness, i.e., G'xytj = G°xyt0, the term Kis unity and equation 15 simplifies to 

(T« y cÄ 

tank Ac 
(18) 

The case of the inner and outer adherends having the same stiffness is referred to as a balanced 
joint. 

The solution given by equation 14 is also applicable to the case when A^y is a smoothly varying 
function of the x direction.   In this case, a T°Z stress component would exist, as indicated by 

equation 3, however, this stress will be small in magnitude when compared with Ta
xz, even for 

high gradients of Nxy in the x direction. A detailed discussion and calculations supporting this 
statement are given by Kim and Kedward [9]. 

3.2 TENSION LOADING. 

The stresses for a bonded joint loaded by tension applied in the y direction has been worked out 
[1,4, and 5] and is simply provided here without derivation. 

yz K 
(N      C 

2       Aj- 
2    o 

sinhXj.y    Ny coshXj-y 

coshAj-c     2   sinhXjC 
(19) 

where (J° is the tensile (or compressive) stress acting in the y direction, due to an applied 

loading Ny. The terms XT and Ci are given by 

f 
I2   —      a i     i 

•+- 
E°t      E't. y o y i   j 

and 

C,= 
GaNy 

E'yWo 

(20) 

(21) 

E'  and E° are the respective inner and outer adherend elastic moduli in the y direction.  It is 

clear by comparison of equation 14 with equation 19 that the solution derived for shear transfer 



is analogous to the tension case. However, the chief difference lies in the governing equation 6, 
which is applicable for cases where the loading N^ is not constant with respect to x and y, 
and for assemblies such as a bonded doubler reinforcement, for which the simple solution] 
equation 9, is not applicable. 

For a balanced tension-loaded joint (i.e., KT =Ei
ytiIE°yt0 =1), the normalized peak adhesive 

shear stress at the ends of the bond overlap is 

with 

fe)r 
(<) 

y-±c CA+Y 

tanh^c 

\  yz 'ave        IJ„ 

(22) 

(23) 

3.3 COMBINED LOADING. 

Figure 8 illustrates the generic profiles and directions of the shear stress acting in the adhesive 
for shear and tension loading. Under combined loading conditions, a multiaxial shear stress state 
would exist. This multiaxial stress state must be considered when predicting the joint's elastic 
limit and ultimate failure loads. Note that the adhesive stresses, due to in-plane shear and 
tension, act in directions perpendicular to each other, and thus cannot simply be summed 
together in order to evaluate adhesive failure. A multicomponent stress failure criterion must be 
used, such as the Von Mises failure criterion, for predicting the elastic limit in isotropic 
materials. 

kf+W] 
where ty is the adhesive shear yield stress. 

(24) 
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3.4 EXAMPLE CALCULATIONS. 

3.4.1 Glass/Epoxy and Carbon/Epoxy Joint Under Gradient Loading. 

The closed-form solution developed for a semi-infinite joint is now demonstrated for the 
example of a bonded I-beam shear web, as illustrated in figure 9. A particular interest exists to 
test the solution for a shear load Nxy(x) that is arbitrary and smoothly varying (i.e., not a linear 
function of x). To this end, a shear-loading function is chosen to represent the transition in shear 
flow in the web in the region adjacent to an applied point load, as shown in figure 9. 

AL. = 4.38 
( 

xy cos 1-3 
a 

\ 
N/mm (25) 
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FIGURE 9. LAP-JOINTED SHEAR WEB UNDER SPATIALLY VARYING SHEAR LOAD 

This function is valid in the width direction of the joint in the region 0 < x < a and is constant in 
the y direction. For x < 0, N^ is constant at 17.5 N/mm and for x > a, N^ is constant at 8.75 
N/mm. The calculation is performed using the same joint geometry for two laminated composite 
adherend cases: (1) woven glass/epoxy and (2) unidirectional carbon/epoxy. The geometry of 
the joint and the material properties of the adherends and adhesive are given in table 1. Both of 
these symmetrically laminated composite adherends have a ±45°-ply orientation content of 50%, 
with the remainder of the plies oriented at 0° and 90° in equal proportion (25% each). 
Furthermore, the thickness and material of both the inner and outer adherends are the same. This 
condition is a special case where the stiffness of the inner and outer adherends are the same. A 
joint with matching adherend stiffness is referred to as a balanced joint.    Since stiffness is 



TABLE 1. SEMI-INFINITE JOINT GEOMETRY AND MATERIAL PROPERTIES 

Joint Parameter Symbol Value 
Length of bond overlap 2c 12.7 mm 
Joint width over which loading varies a 25.4 mm 
Inner and outer adherend thickness tii t0 2.54 mm 
Adhesive thickness ta 0.254 mm 
Adhesive shear modulus Ga 1.1 GPa 

Glass/epoxy laminate effective shear modulus (case 1) G'xy>   Gxy 6.5 GPa 

Glass/epoxy laminate effective tensile modulus (case 1) F'    F" Zy,    Vy 17.2 GPa 

Carbon/epoxy laminate effective shear modulus (case 2) G'xy>   G°xy 21.4 GPa 

Carbon/epoxy laminate effective tensile modulus (case 2) F'    F° Uy,        Zy 82.7 GPa 

computed as the product of modulus and thickness, it is conceivable that a composite joint can be 
balanced with respect to shear loading but not balanced with respect to tension or compression 
loading. This is due to the ability to independently tailor tension and shear moduli in a 
composite through choice of laminate ply angles. 

The T°xy stress in the outer adherend and the xa
xz adhesive stress are calculated using the closed- 

form solution given by equations 9 and 14. These results are compared to a finite difference 
numerical solution of the governing equation 6. The finite difference model was constructed to 
represent the outer adherend in the region of the bond overlap and over which the loading varied 
(-c<y<c,0<x< a). The grid spacing was 0.508 mm in the x direction and 0.127 mm in the y 
direction. The finer spacing in the y direction is necessary to capture the high-stress gradients 
existing along this direction, particularly at the termination of the joint overlap, at y = ±c. 

For the materials and geometry given in table 1, the adherend and adhesive stresses are computed 
and normalized by a running average shear stress (i.e., average depends on x-position). The 
average shear stress in the outer adherend can be calculated by recognizing that each adherend 
carries a proportion of the applied load which is dependent upon the stiffness of the outer 
adherend relative to the inner. 

fe) = 
G" N 

G°t +G' t. xy o xy' i 

(26) 

The average inner adherend shear stress can be calculated by replacing G° in the numerator of 

equation 26 with G' . 

The normalized adherend and adhesive shear stress profiles are shown in figures 10 and 11 for 
both the glass/epoxy and carbon/epoxy adherend cases. In these figures, the closed-form 
solution is referred to by the abbreviation CF, and the finite difference results by FD.   The 

10 



1  ' 1 r T 

'       '       '    J Normalized Outer Adherend 
In-Plane Shear at x = 0.2a 

1 5 
    CF, Glass/Epoxy 

Carbon/Epoxy               JF   i      _ 
O        FD, Glass/Epoxy 

 CF, Carbon/Epoxy \y/. 
Wy 

(r° } V *»Y /av« 

+        FD, Carbon/Epoxy ^*££^ 
^ff^ffelf(^^^^^ 

Rfieceocecec*^~-               \                                  _ 

■   yZ^ Glass/Epoxy 

«•   +^ 

/ / 
0.5 

n f             .                1                .                1 
-1 -0.5 0 

y/c 
0.5 

FIGURE 10. r°„ ADHEREND IN-PLANE SHEAR STRESS, (r°„)   = 3.28 MPa 
-v \   x) lave 

4  A 

3   - 

(V»\ 

1   - 

-'  1     ' 1                          '                          1                          ' 

1 
1 

? * 

Normalized Adhesive 
x-z Shear at x = 0.2a 

» 
L 

4 \ 
l 

■  » 
O        FD, Glass/Epoxy 

t 
 CF, Carbon/Epoxy 

* 
9 

-j-        FD, Carbon/Epoxy Glass/Epoxy     f   " 

Carbon/Epoxy                 a^r \ * 
♦A 

- 

>«**a«^.—.                   | 

-0.5 0 

y/c 
0.5 

FIGURE 11. T" ADHESIVE SHEAR STRESS, (T° 1  = 1.31 MPa 
A2 \    At. /uV€ 

stresses are plotted along the path x = 0.2a, which is a location away from a region of near 
constant applied loading (e.g., x = 0), and for which the loading function is nonlinear in x (i.e., 
d2Nrv /dx2 ^ 0). These criteria were used to select the location for solution comparison in order 

xy j 

to demonstrate that the solution developed is valid for any general, smooth, x-varying load 
function. 
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Figures 10 and 11 show that the closed-form solution is nearly identical to the finite difference 
results. Note the different rate of load transfer between the two joint materials. The 
carbon/epoxy adherend has a significantly higher shear modulus, resulting in a more gradual 
transfer of shear loading between the two adherends (see figure 10). The shear stress in the inner 
adherend, r' , can be obtained from equation 1 once the outer adherend stress x" is known. For 

xy 

a balanced joint, the inner adherend shear stress is simply a mirror image of figure 10, about the 
y = 0 axis. 

The adhesive shear stress T° , shown in figure 11, is a maximum at the edges of the joint at 

y = ±c This figure shows that a joint of identical geometry with more compliant (glass/epoxy) 
adherends results in significantly higher shear stress peaks. Conversely, a joint with stiffer 
adherends (carbon/epoxy) carrying the same loads has a higher minimum stress at the center of 
the overlap and may need to be designed with a greater overlap length so as to maintain a low 
stress "elastic trough" that is long enough to avoid creep [12] in the adhesive. In joint design, it 
is necessary to address both the maximum and minimum stress levels in the adhesive, the former 
to avoid initial (short-term) failures near the joint extremities, the latter to resist viscoelastic 
strain development under long-term loading. For an unbalanced joint (e.g., t0 = 1.5 mm), 
one edge of the joint (at y = +c) would have a higher value of shear stress than the other side (at 
y = -c). 

3.4.2 Validation by Finite Element Analysis. 

Further validation of the closed-form solution is demonstrated by comparison of the adhesive 
shear stress predicted by equation 14 with finite element analysis (FEA) results. Consider the 
system shown in figure 12. Here a lap-jointed aluminum panel of dimensions, support, and 
loading configuration shown in the figure produces a region of approximately uniform shear 
stress resultant N^ away from the free edge. The overlap dimension of the panel is 2c = 12.7 
mm, the adherends have thickness tt = t0 = 1.016 mm, and the bondline thickness is ta = 0.508 
mm. The Young's modulus of the aluminum is 68.9 GPa, and the shear modulus of the adhesive 
is Ga = 1.46 GPa. Also in figure 12 is the FEA mesh used for analysis. Note that solid elements 
needed to be used in modeling the joint due to the nature of applying shear loading to a lap joint 
geometry. In contrast, tension-loaded joints can often be analyzed using two-dimensional FEA 
models. 

The applied load F = 623 N was chosen such that a theoretically constant (by simple Strength of 
Materials calculation) shear flow in the web of 17.5 N/mm exists. The FEA prediction of A^, 
plotted in figure 12 as a function of the x and y directions, reveals that the actual average shear 
flow is 18.7 N/mm, and is approximately constant over the hatched region (see figure 12) away 
from the free edge. This value of N^ = 18.7 N/mm is used as the loading for the closed-form 
prediction of adhesive shear stress (equation 14) along the path A-B indicated in figure 12. 
Figure 13 plots the FEA and closed-form predictions of Ta

xz along path A-B. The closed-form 
solution over-predicts the peak shear stress by less than 2%. It is clear from the comparison 
shown in figure 13 that the closed-form solution provides an accurate prediction of adhesive 
shear stress. Additionally, the closed-form equations provided a solution at much less 
computational cost than FEA.   Note that additional refinement of the FEA mesh at the bond 
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FIGURE 12. SHEAR STRESS RESULTANT PROFILE IN LAP-JOINTED 
ALUMINUM PANEL 
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FIGURE 13. COMPARISON OF ADHESIVE SHEAR STRESS PREDICTED BY FEA AND 
CLOSED-FORM SOLUTION; T" PLOTTED ALONG PATH A-B IN FIGURE 12 
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overlap terminations, at y = ±c, would result in a more accurate shear stress distribution in the 
adhesive at these free edges. The shear stress actually goes to a zero value since these are 
traction free boundaries. However, since this transition occurs over such a small distance (at 
length scales equivalent to the bondline thickness), the relatively coarse FEA mesh used in the 
analysis does not predict this behavior. 

3.4.3 Elastic Limit Prediction for Combined Loading. 

An I-beam of bonded construction is shown in figure 14. This beam is representative of the wing 
spar, illustrated in figure 3. Applied pressure loading can produce significant shear in the web of 
the I-beam. Additionally, for the case of a wing structure, internal fuel pressure and mass 
reaction loads can produce tension loading in the web, as indicated in figure 14. The stress 
resultants N^ and Ny associated with these stresses are shown in the figure. In order to validate a 
safe design, it is desirable to calculate the maximum loads, N^ and Ny, which the joint can carry. 

A 
/ 
/ 
/ 
/ 
/ 
/ 

-«--A 
I    t    t    t    t    t    t    ti t    t    t T-T P/2 

"'      f     f      f      f      f      T      ?      f      T      T } } ' 
P/2 

Outer Adherend 
(Angle Clip) 

Inner Adherend 
(Shear Web) 

—    Region Modeled as 
Double-Lap Bonded Joint 

Section A-A 

FIGURE 14. BONDED I-BEAM LAP JOINT; LOADS APPLIED THROUGH 
SHEAR WEB ARE TWICE THE LOADS USED IN JOINT ANALYSIS 

DUE TO DOUBLE-LAP SYMMETRY 

For this design case study, the I-beam shear web and angle clips, shown in figure 14, are 
constructed of high modulus graphite/epoxy in a balanced and symmetric lay-up with all of the 
plies oriented in the ±45° directions. A high content of ±45° plies in the shear web is desirable 
for providing an I-beam with maximum stiffness under transverse loading. For a joint to be 
balanced (in the joint stiffness sense, as opposed to lamination) under both shear and tension 
load, the clip should be selected to be of the same material, lay-up, and thickness as half of the 
web. Table 2 lists the geometry and material properties relevant to analyzing this joint. 
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TABLE 2. I-BEAM WEB JOINT SPECIFICATIONS 

Joint Parameter Symbol Value 

Web and clip thickness H — Iweb'^ > to 1.02 mm 

Web and clip tensile/compressive modulus F'     F" Zy,    ^y 14.5 GPa 

Web and clip shear modulus G'xy>  G°xy 
44.8 GPa 

Web and clip tensile/compressive strength F'u ~ Fcu 

y         y 
HOMPa 

Web and clip shear strength b*y 
296 MPa 

Adhesive shear modulus Ga 1.46 GPa 

Adhesive shear yield stress f 37.9 MPa 

Profiles of adhesive shear stress arising due to the Nxy and Ny loads are plotted in figure 15 using 
equations 14 and 19 for various overlap lengths. The plots show that as the overlap length gets 
smaller, the minimum stress (at y = 0) increases, and the stress distributions become more 
uniform. Beyond a certain overlap length, the maximum shear stress in the adhesive 
asymptotically approaches a constant value, as shown in figure 16. This result is contrary to the 
stress predicted when assuming an average (uniform) shear stress profile along the joint length. 
The error of such an assumption is made clear by the plots of average shear stress, in figure 16. 
Using average shear stress calculations can result in a significantly nonconservative prediction of 
a joint's performance. 

ta (MPa) for N^, = 17.5 N/mm x\ (MPa) forNy= 17.5 N/mm 

FIGURE 15. ADHESIVE SHEAR STRESS PROFILES FOR ta = 0.254 mm 
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FIGURE 16. PEAK ADHESIVE SHEAR STRESS (AT y = c) FOR 
VARIOUS BOND THICKNESS ta 

The selection of the optimum joint overlap length and thickness depends on the actual load the 
part must hold, as well as considerations highlighted by Hart-Smith [12] regarding creep of the 
adhesive. Hart-Smith recommends that the minimum stress in the adhesive remains less than 
one-tenth of the adhesive yield stress in order to prevent creep. Furthermore, in a design which 
permits plastic yielding of the adhesive, the presence of a large "elastic trough" is desirable in 
providing the joint with redundant unstressed material which can accommodate flaws in the bond 
area, thereby resulting in a damage tolerant joint. 

Under simultaneous shear and tensile loads, the adhesive is under a state of biaxial shear stress, 
T°z and x % • The von Mises yield criterion, given by equation 24, is one method that can be used 

to determine the elastic limit of the joint. Using the adhesive shear yield stress xy listed in table 2 
and inserting expressions for the peak components of adhesive shear stress, (equations 18 and 
22), an elliptic equation describing the elastic limit as a function of A^, and Ny is calculated. 

NyK Y   ( 

2tanhÄj.c 
N^ 

2tanhX =H (27) 

Elliptical surfaces defining the limit of elastic behavior are plotted in figure 17 using equation 
27. The joint is expected to behave elastically for load combinations within and plastically for 
combinations outside of the envelope. A distinction should be made between elastic limit and 
joint failure. For an adhesive that develops significant plastic deformation before final failure, 
the joint can have load carrying capacity beyond that defined by the elastic limit. The extent of 
this capacity is dependent upon the overall joint parameters. 

The effect of bondline thickness on the shape of these surfaces is more significant than overlap 
length.  This latter observation is due to the peak values of adhesive shear stress asymptotically 
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leveling off for increasing overlap length, as shown in figure 16. Note that the analysis presented 
in this report assumes a constant shear stress distribution in the adhesive thickness direction (in 
z direction). It has been shown by Gleich, et al. [13] that this assumption yields only a prediction 
of the average adhesive shear stress, whereas in reality, a significant through-thickness variation 
in adhesive shear stress exists for thicker bondlines. The shear and peel stresses at the adhesive- 
to-adherend interface were shown to be much higher than the average value that is predicted by 
this and Volkersen's [1] theory. Consequently, when evaluating failure in thick bondline joints, 
one needs to account for this bondline thickness dependency effect in order to achieve accurate 
failure predictions. 
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FIGURE 17. EFFECT OF BONDLINE THICKNESS AND OVERLAP LENGTH ON 
ELASTIC LIMIT ENVELOPES FOR COMBINED N^ AND Ny LOADING; 
PLASTIC BEHAVIOR OCCURS FOR VALUES OF LOAD OUTSIDE OF 

THE ENVELOPE (ABOVE AND TO THE RIGHT) 

The limit curves in figure 17 graphically aid in the design of a shear- and tension-loaded joint. 
In an overall design, other failure modes to be considered are peel stress (not predicted in the 
present analysis) in the joint and material failure and buckling of the shear web. For the 1.02 
mm thickness ±45° laminates used in this design case study, the failure loads in shear and 
tension are A^, = 301 and Ny = 112 N/mm, respectively (see table 2 for strengths). These are the 
upper bounds in N^ and Ny loading that can be applied to the joint due to adherend failure. 

In considering the "best" joint design, no singular optimal configuration exists. Factors related 
to joint fabrication (i.e., 25.4-mm overlap may be easier to construct than 5.02 mm), load 
carrying capacity requirements, and constraints related to part-to-part assembly must also be 
considered. Based on the elastic predictions for this example design case study, a desirable 
configuration is an overlap length of between 12.7 to 25.4 mm (c = 6.35 to 12.7 mm) with a 
target bond thickness of 0.254 to 0.508 mm. This configuration provides a generous low-stress 
"trough" that provides the joint with damage tolerance, while at an overlap length that results in 
the asymptotically approached lowest elastic stress peak. 
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4. SOLUTION FOR FINITE CASE. 

4.1 BONDED DOUBLER. 

The previous section treated the case of a semi-infinite joint subjected to a gradient loading. In 
this section, a closed-form solution of the governing equation 6 is presented for the case of a 
finite-sized doubler bonded to a base structure that is subjected to remotely applied in-plane 
shear loading, as shown in figure 18. A doubler is often bonded onto a structure to serve as a 
reinforced hard point for component attachment, such as an antenna on an aircraft fuselage or to 
increase thickness at local areas for carrying loads through holes, e.g., a bolted attachment. In 
this case, the bonded doubler patch can be considered as the outer adherend, and the plate to 
which it is adhesively joined, the inner adherend. Since the doubler is finite in size along both 
the x and y axes, a simple solution approach cannot be employed such that the governing 
equation can be treated as an ordinary differential equation. Here, the full partial differential 
equation must be solved. The rectangular bonded doubler is a particular configuration for which 
an assumed T^ stress function can be chosen to satisfy both the boundary conditions of the 

problem (T£= 0 at x = 0, a and y = 0, b) and the governing equation. A double Fourier sine 
series satisfies both of these conditions. 

xy (28) 

Bonded Doubler 
- Outer Adherend 

Base Structure 
- Inner Adherend 

FIGURE 18. FINITE-SIZED DOUBLER BONDED ONTO 
PLATE WITH REMOTE SHEAR LOADING N- xy 

The Fourier coefficient Amn is determined such that the governing equation 6 is satisfied. To 
achieve this, the nonhomogeneous term of the governing equation, C„, must also be represented 
by a double Fourier sine series. 

c=yy.c • „ rar x     •    nit y 

m=l n=\ 
(29) 
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where Cmn is the Fourier coefficient in equation 29 and is calculated by 

Cmn = — ÜC0 (x,y) sin ^ sin ^dydx 
ab 

(30) 

In equation 30, the term C0(x,y) within the double integral is the nonhomogeneous term of the 
governing equation 6 and should not to be confused with the C0 on the left-hand side of equation 
29. Note that spatially varying N^xj) loading is accounted for through the C0(x,y) term in 
equation 30. 

Inserting equations 28 and 29 into the governing equation 6, the Fourier coefficient of equation 
28 can now be solved for 

("NTTM* 
(31) 

The series solution given by equation 28 provides the in-plane shear stress distribution within the 
outer adherend.    The adhesive shear stress components, T"Z  and %a

yz, are calculated using 

equations 2 and 3.    Note that in the finite-sized joint case, the xa
yz  stress is significant in 

magnitude at two opposing doubler boundaries x = 0 and x = a, even for a constant A^ applied 
load. 

4.2 EXAMPLE CALCULATION. 

An example calculation is now presented. Consider a thin glass/epoxy structure (inner adherend) 
carrying shear load. A carbon/epoxy doubler (outer adherend) is bonded to the structure. The 
geometry of this example problem is listed in table 3. The material properties used in the 
calculation are taken from table 1. Applied shear load is a constant N^ =17.5 N/mm. 

TABLE 3. FINITE-SIZED DOUBLER GEOMETRY 

Doubler Parameter Symbol Value 

Length of doubler in x direction a 127 mm 

Length of doubler in y direction b 76.2 mm 

Inner adherend thickness; glass/epoxy base structure tt 1.27 mm 

Outer adherend thickness; carbon/epoxy doubler to 2.54 mm 

Adhesive thickness ta 0.508 mm 

The results of the calculation are shown by the three-dimensional stress surface plots in figures 
19 to 21. In figure 19, the doubler in-plane shear stress T^, is plotted. The plots correctly show 

that this stress goes to zero at the boundaries.  Away from the edges, towards the center of the 
doubler, the stress is the average shear stress, 5.97 MPa, as calculated by equation 26. 
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The adhesive shear stress component T°, plotted in figure 20, has maximum magnitude at two 

opposing edges of the doubler, at y = 0 and y = b. Similarly, the adhesive shear stress component 
ia

yz is maximum at the edges x = 0 and x = a, as shown in figure 21. 

x = 0' 

T° vs. y at x = a/2 
6 -i 
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y = 0 

FIGURE 19. SHEAR STRESS T° IN THE DOUBLER xy 
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FIGURE 21. ADHESIVE SHEAR STRESS T" JZ 

These plots were generated for a large number of terms (m = 167, n = 101) taken in the series 
solution, equation 28. A drawback to the sine series solution applied to this problem is that 
convergence can be slow. This is especially so when the gradients in T°y occur at a length scale 

that is small compared with the overall size of the doubler, (e.g., less than one-tenth size). Figure 
19 shows this to be the case for this example problem. Consequently, a high number of terms in 
equation 28 need to be used in order to converge upon an accurate solution. Table 4 lists the 
values of peak adhesive shear stress for combinations of the number of terms taken in the double 
sine series solution. Values of (T"Z )max were taken at the location x = a/2, y = 0, and (ta

yz)max 

values were taken at x = 0, y = b/2. 

TABLE 4. CONVERGENCE OF DOUBLE SINE SERIES SOLUTION (Units are in MPa) 

n 41 101 167 501 

m (xa ) »     xz 'max (ra ) \     yz 'max »     xz /max (Tfl  ) y     yz /max (ra ) »     xz /max (Ta  ) *     yz /max *     xz /max (ta ) t     yz /max 

41 6.74 5.76 7.69 5.75 7.96 5.75 8.24 5.75 

101 6.70 7.21 7.65 7.19 7.92 7.19 8.20 7.19 

167 6.70 7.66 7.64 7.64 7.90 7.63 8.18 7.63 

501 6.70 8.13 7.64 8.10 7.91 8.09 8.19 8.09 
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The table shows that increasing the number of terms taken in m yields more accuracy in 
predicting (Ta

yz )max, while an increasing number of terms taken in n yields a more accurate 

prediction of (rxz )max. This is due to the number of m and n terms each directly improving the 

representation of the doubler in-plane shear stress in the x and y directions, respectively, from 
which (Ta

yz)max  and (TXZ )max are computed.   Obviously a better representation of ?°   in the 
xy 

x direction (more m terms) would result in an improved calculation of %a
yi. Similar statements 

can be made regarding T^ and the number of n terms. Note that a higher predicted value of 

(Tyz Lax is calculated for a combination of m = 501, n = 41 than for m = 501, n = 501. This is 

due to the nature of the assumed sine series solution which predicts an oscillation of the Ta 

stress about a mean value when plotted versus y at any station in x (e.g., at x = 0) for a given 
number of terms taken in m. As shown in figure 22, increasing the number of terms taken in n 
results in a convergence to that mean value (i.e., higher frequency yields lower amplitude), while 
changing the number of terms taken in m will change the mean value, as is reflected in table 4. 
The same arguments apply to explain this apparent loss of accuracy when comparing values of 
(K La. for m = 4l,n = 501 with {xa

xz )max calculated for m = 501, n = 501. Note that these 
differences, as listed in table 4, are negligible at less than 1% for the number of terms used in 
constructing this convergence study. However, they would be higher if a lower number of m and 
n terms were taken, e.g., m = 21 (see figure 22). 

Increasing Number of Terms, n, Yields 
Lower Oscillation Amplitude and 
Slightly Redued Stress at y = b/2 

m = 101 
Mean = 7.19 MPa 

at y = b/2 

For Given m, 
a Very Large 
Number of 
Terms, n, 

Would Result 
in Mean Value 

m = 41 
- Mean = 5.75 MPa 

at y = b/2 

FIGURE 22. OSCILLATORY PROFILE OF ADHESIVE SHEAR STRESS xa
yz AT x = 0 FOR 

LOWER NUMBERS OF TERMS m AND n USED IN INFINITE SERIES SOLUTION 
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The underlined values in table 4 indicate the solution from which the plots in figures 19 to 21 are 
constructed, i.e., at m = 167, n = 101. These values for m and n were chosen such that roughly 
ten half-sine waves fit within the edge boundary zone, 8, where gradients in x°xy exist. The size 

of this boundary zone is indicated in figure 19. A calculation of the boundary zone size, 8, can 
be made using the relationship 

\ne 
8 = -— (32) 

where A, is given by equation 7 and e is an arbitrarily chosen small tolerance value close to zero, 
e.g., use e = 0.01. Equation 32 is derived from the general form of the semi-infinite joint 
solution, which assumes x° °c e~**. 

Ay 

In regions away from the corners of the doubler, the adhesive shear stress profiles for xa
xz and 

T°z can be accurately predicted using the semi-infinite joint solution approach presented in the 

previous section. The validity of performing such a calculation can be verified by observing the 
xxz adhesive stress profile in figure 20.   In the regions away from the two opposing doubler 

boundaries, x = 0 and x = a, the stress profile xxz is only a function of y. Furthermore, this 

profile is identical to that which would be predicted by a semi-infinite joint calculation. To 
compute the xxz( y ) adhesive shear stress profile, away from the edges x = 0 and x = a, 

the boundary conditions, x" ■=■ 0 at y = 0 and y = b, must be applied to the assumed solution, 

equation 9, in order to solve for the coefficients A0 and B0. Equation 2 is then used to compute 
the adhesive stress component acting in the x-z plane. 

r«<y>=Y (cosh Ab -1) cosh Ay + \ 
sinhAb 

for 8<x<(a- 8)       (33) 

Equation 33 can be rewritten for T°z (x) by replacing y with x, and b with a. 

for 8<y<(b- 8)       (34) C t;jx) = t (cosh Aa — l) cosh Ax + l 
sinh Xa 

These formulae both predict a peak magnitude of shear stress, (x"z )max=(xa
yz )max = 8.33 MPa, at 

the same locations for which values listed in table 4 were obtained. This peak magnitude of 
adhesive shear stress can be considered the exact value. Comparing this value with the m = 167, 
n = 101 case in table 4, the values listed there are 8% below the exact. The values of (xa

xz )max 

and (xa
z )max for the m = 501, n = 501 case are less than 3% below the exact value.  A plot of 

equation 33 for the bonded doubler example is compared in figure 23 with the double sine- 
series-based stress prediction using equation 28 for the m = 167, n = 101 case. 
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4.3 APPLICATIONS. 

The stress x°xy in the interior region of the doubler away from the edges is a nominal value 

calculated by equation 26. For doublers of practical size, this nominal stress region is quite large 
compared to the boundary zone regions (see figure 19). Consequently, a self-equilibrating 
applied load, or geometry that perturbs the stress state within the confines of this nominal stress 
zone, would not affect the prediction of adhesive stresses at the doubler boundary (or visa versa). 
An example would be an antenna mount, or a hole serving as a bolted attachment point, 
as shown in figure 24. A crack being repaired using an adhesively bonded patch, shown in 
figure 25, would also fall under this condition, so long as the crack geometry is smaller than the 
patch overall dimensions, and the resulting perturbed stress state does not affect the nominal 
stress state in regions close to the patch boundaries. Note that a separate analysis must be 
performed to account for the effects of stress concentrations that arise due to the hole or crack 
geometry. Such a calculation is greatly simplified when it is not necessary to simultaneously 
account for the boundary stress gradients. 

Figures 24 and 25 show biaxial tension loading in addition to applied shear stress resultants. As 
mentioned previously, the tensile (or compressive) loads can be accounted for by using a 
tension-loaded, bonded joint analysis and superposing the results of this analysis with the stress 
states predicted by the applied shear loading. 
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FIGURE 24. BONDED DOUBLER APPLIED TO REINFORCE REGIONS WITH 
HOLES OR HARD POINTS 
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FIGURE 25. CRACK REPAIR USING BONDED PATCH 
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5. CONCLUSIONS. 

A general treatment of an adhesively bonded lap joint, loaded by spatially varying in-plane shear 
stress resultants, has been presented. The resulting governing partial differential equation 
describes the in-plane shear stress in one of the adherends. Solution of this equation generally 
permits the calculation of two adhesive shear stress components, xa

xz and r"z. While analogous 

to the governing equation written for the tension-loaded lap joint case, this equation differs in 
that it is inherently two-dimensional. Additionally, since the second order derivative terms of the 
equation can be represented by the Laplacian Operator, V2, the governing equation can be 
readily applied to solve bonded joint problems which are more suitably described by cylindrical 
coordinates. 

For a semi-infinite joint, a closed-form solution to the governing equation was obtained under 
the conditions that the applied loading varies smoothly in the direction across the width of the 
bonded joint (i.e., perpendicular to the overlapping direction). This closed-form solution has 
been verified to be accurate through comparison to a numerical finite difference solution of the 
governing differential equation. Additionally, FEA has been used to verify that the solution 
accurately predicts the stresses in an in-plane shear loaded joint. 

The semi-infinite joint solution is directly analogous to the well established solution for a 
tension-loaded joint. Under simultaneous shear and tension loading, the adhesive stress states 
predicted by each load case can be linearly superimposed to determine a biaxial shear stress 
state. One approach to predicting the elastic limit of a joint under a biaxial stress state is to 
employ the von Mises yield criterion. The result is a user-friendly graphical representation of a 
structure's elastic operating range that can be used to validate the load carrying capability of a 
given design (within elastic range). Additionally, since the solutions are in closed form, the 
effect of geometric and material parameters on joint performance can readily be explored, 
therefore assisting in the selection of design parameters, as well as aid in the evaluation of how 
manufacturing tolerances affect joint behavior. 

A closed-form solution for a finite-sized bonded doubler was obtained using a double sine series 
approximation. For this case, both the ta

xz and %a
yz adhesive shear stress components are 

significant. In order to achieve an accurate sine-series-based solution, the minimum number of 
terms taken in the series should be such that at least five full sine wave oscillations exist within 
the length scale over which gradients in the doubler shear stress exists. Alternatively, an 
approximate, yet accurate, prediction of the maximum values of T° and T\ stresses occurring at 

the boundaries of the doubler can be determined by treating the finite-sized doubler as semi- 
infinite. While this solution excludes the corner regions of the doubler, the adhesive shear 
stresses are predicted to be zero at these locations, and thus, the discrepancy of this solution 
approach is inconsequential. 

In the finite-sized doubler example calculation, a boundary zone at the edge of the doubler was 
shown to exist. This boundary zone is the edge-adjacent region in which gradients in T", are 

significant, and thus %a
xz and xa

yz are of significant magnitude. The size of this boundary zone is 
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governed by the term X, in equation 7. For suffer adherends or a thicker adhesive layer, the 
boundary zone would be larger. In the analogous tension-loaded joint case, this X term would 
contain the Young's Modulus of the adherends, which, in general, is several times larger (at least 
for isotropic materials) than the shear modulus. Therefore, the boundary zone would typically be 
larger for the tension-loaded case than the shear-loaded case. Finally, when numerically 
modeling the joint, either by finite difference or finite element techniques, knowledge of X aids 
in determining what node spacing is adequate enough to accurately resolve gradients in the bond 
stresses. 

In the interior region of the doubler, confined by the boundary zone, the adhesive stresses are 
null, and the doubler in-plane stress, T° , is a nominal value which depends only on the 

magnitude of the remote applied loading, Nxy, and the relative stiffness of the adherends. Within 
this nominal stress zone, geometric features can exist (or self-equilibrating loads applied), such 
as a crack in the base structure (inner adherend) or a hole passing through both adherends. If 
these features are such that the resulting perturbed stress field surrounding the feature is within 
the confines of the nominal stress zone, then the two problems of predicting the doubler edge 
stresses, and the stresses arising due to the geometric feature, can be treated independently. That 
is, they would not influence each other, thus, greatly simplifying their individual treatment. 

The analysis presented is applicable to several joint geometries and applications. There are 
many geometries for which a closed-form solution is not possible. However, most of these 
problems can still be solved numerically, since the governing partial differential equation that 
was derived is well suited for solution techniques based on the finite difference method. 
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